13 research outputs found

    Multistage Homotopy Analysis Method for Solving Nonlinear Integral Equations

    Get PDF
    In this paper, we present an efficient modification of the homotopy analysis method (HAM) that will facilitate the calculations. We then conduct a comparative study between the new modification and the homotopy analysis method. This modification of the homotopy analysis method is applied to nonlinear integral equations and mixed Volterra-Fredholm integral equations, which yields a series solution with accelerated convergence. Numerical illustrations are investigated to show the features of the technique. The modified method accelerates the rapid convergence of the series solution and reduces the size of work

    Homotopy analysis method for solving KdV equations

    Get PDF
    A scheme is developed for the numerical study of the Korteweg-de Vries (KdV) and the Korteweg-de Vries Burgers (KdVB) equations with initial conditions by a homotopy approach. Numerical solutions obtained by homotopy analysis method are compared with exact solution. The comparison shows that the obtained solutions are in excellent agreement

    Numerical Simulation of 2D Sediment Transport Equations via Element Free Galerkin

    No full text
    In this research, the element free Galerkin is implemented to simulate the bed-load sediment transport equations in two dimensions. In this method, which is a meshless method, the computational domain is discretized by a set of arbitrarily scattered nodes and there is no need to use meshes, elements or any other connectivity information in nodes. The hydrodynamical part of sediment transport equations is modeled using 2D shallow water equations; and the Exner equation describes the sediment continuity. Eventually, to appraise the ability of considered method, several benchmark examples are solved and then, the obtained results are compared with previously published work

    Homotopy analysis method for solving KDV equations

    No full text
    Abstract. A scheme is developed for the numerical study of the Korteweg-de Vries (KdV) and the Korteweg-de Vries Burgers (KdVB) equations with initial conditions by a homotopy approach. Numerical solutions obtained by homotopy analysis method are compared with exact solution. The comparison shows that the obtained solutions are in excellent agreement
    corecore